Последнее обновление: 10.02.2013 в 21:16
Подпишись на RSS
rss Подпишитесь на RSS, чтобы всегда быть в курсе событий.

Комментарии

Присоединяйтесь к обсуждению
  • Евгений: Доброго времени суток. Кто-то подскажет, как правильно настроить вывод мета-тэгов в результатах поиска. На...
  • Евгений: Доброго времени суток. Возник вопрос по специфике движка SilverStripe. Есть основное зеркало сайта вида...
  • Вадим: Спасибо помогло, сделал так date_timezone = Europe/Kiev
  • John Doe: Не помогло, шаблон все ровно всегда такой же как у главной страницы ((
  • Алексей: Здравствуйте. Спасибо за статью. Собираюсь осваивать MODx (сейчас сижу на WP) и статья очень пригодилась!...
18 Ноябрь 2009 · SilverStripe, Проекты

Итак, вчера начал устанавливать на сайт новую тему, а если быть точным собирал свою из шаблона взятого здесь Из за отсутствия в SilverStripe возможности конфигурирования системы после её установки, пришлось немного порыться по файлам и документации на систему(докментация к стати весьма не плохая). Итак для того что бы сменить тему оформления в CMS SilverStripe в [...]


28 Январь 2009 · о работе

Часто слышу от родных и друзей  вопрос: «А зачем тебе все это?». Зачем эти бессонные ночи и долгие часы работы в сети ради, зачастую смешной прибыли, а то и просто за просто так. Ну что же отвечу на этот вопрос…Во-первых, я не такой бескорыстный как кажется иногда гораздо выгоднее разместить на сайте ссылку сюда или [...]


1 Август 2013

Хаос, организация, информация

Рубрика: Эволюция биосферы.
Vote This Post DownVote This Post Up (No Ratings Yet)
Loading ... Loading ...

Противопоставление организованного неорганизованному, порядка хаосу принадлежит к числу самых древних представлений.

Аристотель в «Метафизике» цитирует греческого философа Гесиода, жившего в VIII в. до н. э. «В самую первую очередь возник хаос, а затем уже Гея (Земля) с широкой грудью». В библейском мифе о происхождении мира бог создал организованную вселенную из первоначального хаоса. Английский кибернетик Ст. Бир не без основания утверждает, что в основе многих современных концепций лежит это древнее представление ю первичности хаоса. В подтверждение мысли Бира можно, в частности, сослаться на книгу английского ученого Д. Бернала, в которой проблема возникновения жизни отождествляется с вопросом, «как из беспорядка возник порядок… как возник порядок в практически неупорядоченном мире».

Однако, что такое хаос? Пожалуй, наилучший ответ на этот вопрос дал английский кибернетик У. Р. Эшби. Хаос, по Эшби, неограниченное разнообразие, т. е. отсутствие каких-либо связей между элементами. Предметы и явления представляют собой примеры ограничения разнообразия.

Таким образом, понятие хаос — философская абстракция, мир без связей и взаимодействий. Естественно, что подобный мир не способен развиваться самостоятельно. Поэтому представление о первичном хаосе неразрывно связано с идеей о высшей организующей силе — боге-творце, с представлением о сверхъестественном происхождении организованности Вселенной. Подобная Вселенная, будучи предоставлена сама себе, способна только упрощаться и разрушаться. Немецкий ученый Ф. Ауэрбах писал: «Акт творения — это единственный акт всеобщего сосредоточения мировой энергии, образование противоположностей и максимальных ценностей… С тех пор — если рассматривать мир как таковой — все убывает и мы не знаем ни об одном, хотя бы самом незначительном приращении… В Космосе, взятом в целом, нет развития».

Вторая часть утверждения Ауэрбаха — деградация Вселенной — основывается на втором принципе термодинамики и его следствии — росте энтропии в замкнутых системах. Распространяя идею роста энтропии на весь мир, автор этого понятия и родоначальник своеобразной «философии неупорядоченности» немецкий физик Р. Клаузиус (1865) пришел к выводу о неизбежной тепловой смерти Вселенной. Попытку опровергнуть подобный вывод Клаузиуса предпринял другой немецкий физик, Л. Больцман (1884). Доказав статистический характер второго принципа термодинамики, Больцман не счел закономерным его распространение на бесконечную Вселенную. В ней возможны флуктуации, в силу которых энтропия в отдельных уголках бесконечного мира будет уменьшаться. Это, так сказать, критика статистической теории на основе чисто статистических соображений.

Советские физики академик Л. Д. Ландау и Е. М. Лившиц исходя из релятивистской термодинамики показали несостоятельность вывода о тепловой смерти даже для конечной Вселенной. Хотя энтропия мира и возрастает, Вселенная благодаря своеобразию организации, в частности в силу особенностей гравитационных полей, не может перейти в состояние равновесия с какой-то максимальной энтропией — показателем хаоса. Французский ученый А. Дюкрок, говоря о движении частиц плазмы в электромагнитных полях, о направлении перемещения частиц нейтрального газа под воздействием гравитационных полей в Космосе, приходит к выводу, что «язык энтропии имеет смысл для гипотез, фактически относящихся только к идеальному случаю». Вывод о тепловой смерти Вселенной, следовательно, основывается на упрощенном представлении об ее организации.

Абстрактному представлению о мире без внутренних, присущих самим вещам и явлениям связей и взаимодействий противостоит идея всемирной связи всех предметов и процессов. «Все происходит опосредствовано, связано в едино, связано переходами…,— писал В. И. Ленин.— Причина и следствие, ergo, лишь моменты всемирной взаимозависимости, связи (универсальной), взаимосцепления событий, лишь звенья в цепи развития материи».

Вселенная организована. Организованность обнаруживается не только в мире живых существ, где на нее уже давно обратили внимание, но и в элементах неживой природы от элементарных частиц до звездных систем и скоплений галактик. «Порядок более естествен, чем хаос»,— пишет Бир. Организованность — не привнесенная извне творцом особенность мира, деградирующая после акта творения, а ее неотъемлемое свойство.

Таким образом, нельзя говорить о возникновении организации из хаоса, речь может идти лишь о более простых и более сложных формах организации. Организованность — такое же неотъемлемое свойство предметов и процессов, как вещество и энергия.

Вещество и энергию можно сравнительно легко измерить, вещество в граммах, энергию в эргах. Можно ли измерить организацию? Долгое время сама постановка такого вопроса казалась лишенной смысла. В самом деле, в каких единицах измерять организованность собаки, березы кристалла поваренной соли и других предметов? С развитием кибернетики и теории информации этот вопрос перестал представляться столь нелепым. Были сопоставлены два понятия: организация и информация.

Под конкретной организацией обычно понимается какая-то совокупность элементов, связанных между собой определенным образом. Заяц, скажем, представляет собой организацию живых клеток, тканей, органов, объединенных в некое морфофизиологическое единство. Стол — тоже организация, смонтированная из определенных характерных частей. Три момента характеризуют организацию: наличие нескольких компонентов, сходных или различных, существование связей между ними и особенности этих связей, придающие конкретной организации определенную форму и устойчивость.

Более сложен вопрос о содержании понятия информация. До работ основателя кибернетики Норберта Винера и автора теории передачи информации по каналам связи Клода Шеннона под информацией понимали сообщение, содержащее какие-то сведения. Совинформбюро, скажем, во время Великой отечественной войны 1941 — 1945 гг. информировало о положении на фронтах; газеты, радио, телевидение ежедневно информируют о событиях в нашей стране и за рубежом; в процессе обучения ученики воспринимают информацию, передаваемую преподавателем, усваивают ее путем чтения учебных пособий и на практических занятиях; исследователь, изучая какое-либо явление, процесс или предмет, стремится как можно больше узнать о нем, т. е. извлечь из него как можно больше информации. В информации, следовательно, находят отражение какие-то реальные процессы, явления, особенности строения. Сообщение Совинформбюро отражало ход боев с фашистами на полях сражения, средства массовой информации отражают ход различных событий на нашей планете, в информации, полученной исследователем в результате изучения каких-либо процессов или явлений, отражается их специфика, находят выражение особенности их организации. Иначе говоря, «информация существует постольку, поскольку существуют сами материальные тела и, следовательно, созданные ими неоднородности. Всякая неоднородность несет с собой какую-то информацию»,— пишет академик В. М. Глугаков и поясняет далее: звезды, например, создавая определенную неоднородность в распределении вещества и энергии, служат источником информации. То же самое можно сказать о любом предмете или явлении окружающего нас мира. Таким образом, источником информации является организация.

В силу того что все предметы и процессы окружающего нас мира связаны между собой в той или иной мере различными категориями связей, они неизбежно обмениваются не только веществом и энергией, но и информацией.

При одинаковом порядке сложности обмен в равной мере обогащает оба (или несколько) взаимодействующие компонента; в случае взаимодействия сложной системы с относительно простой они извлекут из этого взаимодействия разную информацию. Иначе говоря, каждое взаимодействие обязательно сопровождается отбором лишь той информации, которая соответствует структуре взаимодействующих компонентов. Организмы получают из неорганической среды информацию об особенностях химических элементов и соединений, об их распределении, об источниках свободной энергии; неорганическая природа — информацию о продуктах метаболизма. В результате организм обогащается веществом, энергией и информацией, а неорганическая среда видоизменяется в итоге накопления продуктов жизнедеятельности, т. е. также становится информационно другой. Взаимодействие лис и зайцев представляет собой взаимоотношение сложных организмов. Решающую роль при этом играют реакции поведения — результат высшей нервной деятельности. Таким образом, обмен информацией между взаимодействующими компонентами представляет собой своеобразный обмен сведениями об их организации.

Способность извлекать информацию из окружения, очевидно, определяется особенностями взаимодействующих компонентов. «Стакан есть бесспорно и стеклянный цилиндр и инструмент для питья. Но стакан имеет не только эти два свойства или качества, или стороны, а бесконечное количество других свойств, качеств, сторон, взаимоотношений и «опосредовании» со всем остальным миром»,— говорил В. И. Ленин. Далее В. И. Ленин перечисляет еще некоторые особенности стакана: тяжелый предмет, пресс-папье, помещение для пойманной бабочки и т. д. К этому можно добавить, что стакан может стать вещественной уликой для следователя, предметом размышления о развитии стекольного дела, подарком и т. п. А вот для лягушки, жука и подавляющего количества других животных он в принципе неотличим от любого камня. Волны прибоя будут обкатывать стакан так же, как и другие камни, пока он не превратится в россыпь гладких стекляшек…

Значит, один и тот же предмет, обладая бесконечным количеством свойств и, следовательно, бесконечным потенциалом информации (вспомним, что В. И. Ленин говорил о неисчерпаемости электрона), в зависимости от того, с кем или с чем он вступает в связь, обнаруживает различную информационную ценность. «Текст очень содержательной математической статьи не содержит по существу никакой информации для человека, который не является специалистом в данной области математики». Этот же текст уже не содержит ничего нового и для его автора.

Информационная ценность предмета или явления, таким образом, зависит не от количества заключенной в нем информации (оно бесконечно!), но от того, кто или что этой информацией пользуется. Это, естественно, создает весьма большие трудности в измерении информации. В настоящее время благодаря основополагающим работам К. Шеннона разработана пока лишь формальная математическая теория передачи количества информации по каналам связи. Она исходит из представления об информации как о степени снятой неопределенности. Путник стоит у развилки дороги, не зная по какой дороге идти дальше, чтобы дойти до поселка А. Встречный указывает: нужно выбрать правую дорогу. Неопределенность устраняется в результате выбора одного из двух возможных путей. Указание встречного оценивается в один бит (от английских слов binary digit, т. е. «двоичный разряд»). Допустим, что наш путник для того, чтобы попасть в поселок А, должен сделать на встречных развилках дороги еще два выбора, сначала выбрать левую дорогу, потом правую. Следовательно, для достижения поселка А он должен сделать три выбора, т. е. получить информацию, равную трем битам. Приятель из поселка А, к которому направлялся наш путник, мог заранее передать информацию о дороге по телефону или телеграммой в виде сочетания букв ПЛП (правая, левая, правая), или если п — 1, ал — 0, то в виде числа 101. Количество переданной информации при этом равнялось бы трем битам. В сочетании букв ПЛП или в числе 101 нет ни путника, ни дороги, ни поселка А, но в них есть то, что в данный момент нужно путнику — указание маршрута следования. И это может быть измерено достаточно точно.

Математическая теория информации позволяет подсчитывать в битах количество информации, содержащейся в том или ином сообщении, в литературном произведении. Ясно, например, что во всех томах энциклопедии содержится больше информации, чем в одном томе, причем примерно во столько раз, сколько всего томов в энциклопедии. Некоторые исследователи пытались применять ее для оценки организованности живых существ или их сообществ, однако пока без особого успеха. К сожалению, как справедливо говорит академик В. А. Энгельгардт, «математические аспекты теории информации еще не находят отчетливых приложений к анализу элементарных основ жизненных явлений, хотя имеются основания предполагать, что благодаря универсальности принципов этой теории дальнейшее ее развитие откроет возможности для такого рода приложений, которые будут все расширяться и углубляться».

В настоящее время мы вынуждены ограничиться следующими положениями, которые разделяются большинством исследователей:

1. Все предметы и процессы Вселенной представляют собой тройственное единство вещества, энергии и организации.

2. В процессе взаимодействия предметы обмениваются между собой веществом, энергией и информацией. В информации находят отражение особенности организации взаимодействующих предметов.

3. При взаимодействии предметов и процессов специфичность обмена информацией обусловлена особенностями организации взаимодействующих объектов: более организованные объекты способны извлекать из окружения большую информацию, чем менее организованные, одновременно они сами служат источником большей информации.

4. Поскольку каждая организация может быть охарактеризована бесконечным количеством свойств, постольку бесконечно и количество информации, которое в принципе может быть из нее извлечено. Однако отдельные аспекты информации поддаются математической обработке, что вселяет надежду на то, что не только вещество и энергия, но и степень организованности в конце концов получит удовлетворительную относительную количественную оценку.

Вернемся, однако, к проблеме возникновения сложного из относительно простого. Для этого требуется соблюдение следующих условий:

1. Наличие массы относительно простых компонентов.

2. Принципиальная способность компонентов к образованию связей.

3. Источник энергии, обеспечивающий взаимодействие между компонентами.

4. Условия, благоприятствующие некоторой стабильности вновь образующихся систем.

Для обеспечения многостадийности процесса помимо перечисленных четырех условий требуется еще пятое — сохранение возможности участия вновь возникшей организации в дальнейших эволюционных преобразованиях.

В случае преобразования водородного облака соблюдались все пять условий:

1. Водород — самый распространенный элемент во Вселенной.

2. Экспериментально доказана способность водорода превращаться при высоких температурах в гелий. Ядерный синтез лежит в основе взрывной реакции водородной бомбы.

3. Источником энергии синтеза служат силы гравитации, переходящие в тепловую энергию движения атомов, а также особые условия, создающиеся при взрывах звезд, ведущих к образованию сверхновых звезд.

4. Относительная стабильность вновь возникших химических элементов обеспечивается, во-первых, внутриядерными силами и, во-вторых, выбросом в космическое пространство при взрывах звезд.

5. Выброс некоторой части тяжелых элементов в Космос — предпосылка их участия в дальнейшей эволюции материи…

«Значительная, вероятно большая, часть этих тяжелых атомов навсегда остается в плотных белых карликах. Только выброшенное в межзвездную среду вещество продолжает участвовать в дальнейшей эволюции звезд и туманностей».

Возникновение сложных химических элементов из водорода, таким образом, длительный, сложный и многоступенчатый процесс. Их структура и распространенность — результат циркуляции веществ между звездами и межзвездной средой, своеобразного космического круговорота веществ, а также отражение космической истории их формирования.

Возникновение более сложной организации из относительно простой, следовательно, представляет собой закономерную интеграцию в небольшом объеме особенностей эволюции больших материальных систем. Прогрессивное развитие, характеризующееся возникновением сложного из простого, представляет собой в своей сущности процесс интеграции рассеянной информации.

Читайте так же:

  • Нет схожих постов


Мы плетем паутину
Создание сайтов для меня это не просто работа, это то, что больше всего мне нравится в этой жизни. Я постояно учусь новому и кое-что попадает на страницы этого блога. Сюда же я выкладываю свои мысли о жизни. Заходите, читайте, спрашивайте.

Счетчик